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Population Growth in Random Media. 
II. Wavefront Propagation 

A. Greven I and F. den Hollander 2 

In this second part of a two-part presentation, we continue with the model 
introduced in Part I. In this part, the initial configuration has one particle at 
each site to the left of 0 and no particle elsewhere. The expected number of par- 
ticles observed at a site moving at speed z >/0 has an exponential growth rate 
(speed-r growth rate) that is computed explicitly. The result reveals two charac- 
teristic wavefront speeds: %, the speed of the front of zero growth (rightmost 
particle), and %, the speed of the front of maximal growth. The latter speed 
exhibits a phase transition, changing from zero to positive as the drift in the 
migration crosses a threshold. The qualitative shape of the growth rate as a 
function of �9 changes as well. In particular, below the threshold there appears 
a linear piece, which corresponds to the system exhibiting an intermittency 
effect. 

KEY WORDS:  Wave front propagation; random medium; variational 
formula; population growth. 

3. I N T R O D U C T I O N  A N D  RESULTS 

3.1. Wavef ronts  

Our aim in Part II is to describe how the population in the model 
introduced in Part I spreads out in space in the course of time. For that 
purpose we choose the simple starting configuration 

t/0(x) = {1 for x~<0 
0 for x > 0  
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and we investigate how this wavefront propagates to the right. There are 
two characteristic wavefront speeds of interest: 

1. r l ,  the speed of the front of zero growth (rightmost particle). 

2. %, the speed of the front of maximal growth. 

We shall refer to these as the microscopic, resp. macroscopic, wavefront 
speeds. It will turn out that whenever 2(fl; h; 0) > 0 [see (0.20) of Part I] 

0 ~  Z'2 <~'1 ~ 1 

f = 0  for h<.hc (3.1) 

v 2 ~ > 0  for h>h c 

with hc defined in (0.16) of Part I. In addition, the speed-r growth rate 
(particle density profile) will be found to exhibit a nonanalyticity in the 
form of a linear piece when h < h c and 0c > 0, with 0c defined in (0.17). 

For earlier work on wavefronts in models of branching diffusion in an 
inhomogeneous medium we refer to Lalley and Sellke (1'2) and Dawson 
et aL (3) 

3.2. Speed-Dependent Growth Rate 

In (0.5) we defined ,~II(27, F) as the exponential growth rate of the 
expected number of particles at site [_rn_J (recall the remark below 
Theorem 1). In Theorem 1, (0.12), we found that 

;II(~. F) = 2(fl, h; v) F-a.s. (3.2) 

with the rhs given by the variational formulas (0.13) and (0.]4). Our 
solution of (0.14) obtained in Proposition4, (2.2), and Proposition 5, 
(2.17)-(2.18), now allows us to compute 2(/3, h; v). We use the notation in 
(0.15) (0.16) and introduce an extra quantity s*=s*(/3,~) defined as 
follows: 

~<~0c: s * = 0  

F(s*) (3.3) 
> Oc : s* is the unique solution of ~ = 

F'(s*) 

Theorem 2 II. (i) The speed-~ growth rate is 

2(fl, h; v) = 2(fl, h; 0) = log[M(1 - h)] + r* 

=log[M(1--h)] + s * -  ~ log (hF~,s*))l-h 

if h>ho~<<,O* 

(3.4) 
otherwise 
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(ii) The maximizers 0 = O(fl, h, r) and ~(fl, h, ~) are 

-7_ O* if ~ 0 "  0 (3.5) 
if ~ > 0 "  

= zcr fl(j) if h>ho ,  ~<~0" 
g(i, j)  = =r fl(j) otherwise (3.6) 

with 

i i 
4*=  1 - ~ e  -~* and {* = 1-~---e s*  

M M 

C o r o l l a r y  211. (iii) ~ 2 ( f l ,  h;v) is continuous on [0,1] ,  con- 
stant on [0, 0"],  strictly decreasing and analytic on (0", 1), and at the 
endpoint 2(fl, h; 1 ) = log h + Z j  fl(J) log j. 

(iv) A t z = 0 *  

3 
a~R(fi, h;O* +)=O if h>hc 

((l:__hZho) 
= - l ~  

if h <<. ho 

(3.7) 

(v) If 2(fi, h; 0) > 0 > log h + •s fi(J) log j, then 2(fl, h; r) as function 
of z changes sign at ~*, the unique solution of 2(fl, h; z ) = 0  computable 
from (3.4). 

Thus we see that the growth rate and the maximizers display 
interesting behavior as a function of ~ for fixed fl and h. This is displayed 
in the qualitative pictures in Figs. 1 and 2. Note that 2(fl, h; r) = 2(fl, h; 0) 
for r < 0 trivially because r/o(X) = ! for x ~< 0 and particles cannot move to 

Fig. 1. The speed-z growth rate 2(fl, h; r) as a function of z for fixed fl and h under the 
assumption (3.8) below, for h < h~. 
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~]" ~ 1  

Fig. 2. As in Fig. 1, for h > h c. 

the left. The figures are drawn for the most interesting case where fi and h 
are chosen such that 

i (3.8) 

2(fl, h; 0) > 0 > log h + ~ fi(j) log j 
J 

implying that 0 < 0c < hc < 1 and 0 < z~* < 1. 

3.3. Interpretation of Phase Diagram 

Two particularly interesting features of the above figures are: (1) As h 
crosses the critical value h,. the horizontal part of the curve reaches beyond 
0; (2) for h < h c the curve has a linear piece in the interval (0, 0c). In order 
to discuss these effects, we introduce the following notions. 

Define 

z, = sup{z: 2(fi, h; r) > 0} (3.9) 

r z = sup{r: 2(fl, h; r) = 2(fi, h; 0)} (3.10) 

These are the microscopic, resp. macroscopic, wavefront speeds mentioned 
in Section3.1, From Theorem2II  and Corollary2II  we obtain the 
following identification: 

r l  :~----Zc* (3.11) 
r2  z 0 *  

In analogy with Section 0.5, we can define the speed-r typical path of 
descent as the path of descent of a particle drawn randomly from the 
population at site hznJ at time n (conditioned on it not being empty). 
Similarly, introduce its backward displacements relative to site LznJ 

= ,  , ,,=o (Zo = o )  (3.12) 
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and the two functionals 

0; 1 =-2;  (3.13) 
n 

1 2~,' 

i ,~-  ~,, T x=o Z,; +1 ~' 5(i~(~).bL~,,2_~) (3.14) 

with ~ l,,(x) its local time at site x [recall (0.26)-(0.28)]. The analysis in 
Section 1 shows that as n ~ ~ ,  in analogy with (0.30), 

0,] ~ 0(r) a.s. 
(3.15) 

~ --, ~(~) in law for ~ > 0 

where 0(r) and F(~) are the maximizers in (3.5) and (3.6) (for a rigorous 
treatment the tools can be found in Baillon eta/., (4) Section 3). 

We now come to the discussion of the phase diagram. 

(I) Microscopic Wavefront. The speed r~ tells us how fast the 
borderline of the population moves to the right. 

Let 

R~ = sup{x: r/n(x ) > 0} (3.16) 

be the position of the rightmost particle at time n. For any ~, every e > O, 
and n sufficiently large, 

P(Rn>Lrn ][F)= P(x>~L~nj r / , ( x )>~ l lF )  

<~ ~ E(tl~(x)IF) 
x > LrnJ 

(n - Lrn/)  exp(n [2(fl, h; r) + e]) F-a.s. (3.17) 

The last inequality uses q,,(x)= 0 for x > n plus the following observation. 
Let x(n)e(zn, n] be the site where E(tln(X)lF ) is maximal. Let y be 
any weak limit point of x(n)/n as n ~  oo. Then by the remark made 
below Theorem 1 the growth rate at x(n) equals 2(fl, h; y). Since y ~> z, 
Corollary 2II(iii) gives 2(fl, h; y)~<2(fl, h; T), which proves the claim. It 
follows from (3.17) and Corollary 2II(v) that 

Rn 
lim sup- -~<  r~* = rl a.s. (3.18) 

n~oo  n 
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To prove the opposite inequality, we would have to show that 
2(fl, h; z ) > 0  implies t / , ( / r n J ) ~  oo a.s. (compare with the remark below 
Fig. 2 in Section 0.5 of Part I). Indeed, then 

{R. >~ LznJ} ~- {~.(Lznl) >~ 1} (3.19) 

together with Corollary 2II(v) would imply 

lim inf R,  >~ z* = "r l 
n~o(3 n 

a.s. (3.20) 

so that z~ could be identified with the speed of R,.  We defer this point to 
a future paper. 

(11) Localization vs. Delocalization of Macroscopic Wavefront. 
By (3.11), r2=0*.  Since, by (0.19), 0 " = 0  for h<~h~ and 0* >0 for h>h~, 
we see that the macroscopic wavefront develops a positive speed as h 
crosses hc. 

(111) IntermRtency. The linear piece in Fig. 1 is related to a 
remarkable phenomenon for the speed-z typical path of descent 2~ ~''. 
Indeed, it turns out that for h < hc and r e (0, Oc) there exist random subsets 
A, c [-0, 2 ;  '~j such that 

IA.L 
lim -- 0 a.s. 

I[0, ~"~ . . . .  Z ,  ]l (3.21) 

l imsup 1 E [,(x) <~! a.s. 
n ~ o o  n x ~ A ,  Oc 

(again we refer to Baillon et al., (4) Section 3). Recall that -1,-~'n z n L n' - - - ~ 0 ~ " c  

by (3.5) and (3.15), because 0 " =  0 when h < he. Equation (3.21) says that 
the path spends a positive fraction of its time on a subset of its range that 
has a density tending to zero. Thus, its local times develop large peaks on 
a thin set. This phenomenon is an example of intermittency. (5) The reason 
behind (3.21) is (3.6). Namely, if z ~ (0, 0c), then s * =  0 by (3.3). Therefore 
v~ Moc,~ [recall 0; -1 = Z j  fl(j)(1 - j / M ) - I ] ,  so that in particular f r  Mo,~ 
because 0 =  ~. This means that the supremum over v in Theorem 1, (0.14), 
is not achieved, which explains the above degenerate limiting behavior. 
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4. PROOF OF T H E O R E M  211 A N D  COROLLARY 211 

Most  of the work has been done in Part  I. 

Proof of Theorem 211. According to Proposi t ion  4, (2.1), 

2(~, h; r)= sup J/~,h(O) ( z > 0 )  (4.1) 
[z, 1] 

The properties of J~,h(O) are listed in Proposi t ion 6. 

I. If h < he, then 0 = z, which fits with (3.5) because 0* = 0. We must 
now distinguish between r ~< 0 c and r > 0 c. F r o m  (2.15) and Proposi t ion  5 

7;(i, j) = x;.( i) fl(j) (4.2) 

with 

J r~<0~: ~ * = I - - -  
M 

j e -  r F(r) 
> 0c : (* = 1 - ~ with r the solution of z - F ' ( r )  

(4.3) 

These two cases appear  as one in (3.6) by the definition of s* in (3.3). 
F r o m  Proposi t ion  4, (2.2), 

,~(/~, h; ~) = J~,h(r) 

= log[ M ( 1 -  h ) ] - z log ( ~d~  ) - zK(r ) (4.4) 

where by Proposi t ion  5 

1 
r ~< 0c : K(r)  = log - -  (4.5) 

F(O) 

r > 0~ : K(z) r 1 F(r) = - - + log with r the solution of z . . . .  
F'(r) 

Again these two cases appear  as one in (3.4). 

II. If  h = h c ,  then 0 = r  for z >/0c, while 0E I t ,  0c] for r < 0c. In the 
latter case ~ is still a maximizer. Hence ~ and 2(/~, h; r) are the same as in 
case I. 

III.  If h>hc,  then (3.5) holds because 0 " > 0  is the maximizer of 
J~,h(O). For  ~ ~< 0* the maximizer 0 = 0* coincides with Theorem 2I, (2.21), 

822/65/5-6-21 
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hence 9 with (0.22) and  2(fl, h; z ) = ) , ( f l ,  h; 0) with (0.20). F o r  ~ > 0* we 
again  have 0 --- r and  the result  is the same as in cases I and  II. (5 

Proo f  o f  Corollary 211. Sta tements  (iii) and  (v) are immedia t e  from 
P r o p o s i t i o n  6. S ta tement  (iv) follows from (2.28), namely,  for r > 0" ,  

~-~ ,~(fl, h; ~) = J~,h(z) = log (4.6) 

Let  z+O*. If h<~hc, then 0* = 0 ,  hence s ' J , 0  by  (3.3). Subst i tu te  (0.16) to 
get (3.7). If  h > h  C, then 0 * > 0 c ,  hence s * $ r *  by (0.19) and  (3.3). But 
h r ( r * ) / ( 1 - h ) =  1 by (0.18). Z] 

R E F E R E N C E S  

1. S. Lalley and T. Sellke, Travelling waves in inhomogeneous branching Brownian motions. 
I, Ann. Prob. 16:1051-1062 (1988). 

2. S. Lalley and T. Sellke, Travelling waves in inhomogeneous branching Brownian motions, 
II, Ann. Prob. 17:116-127 (1989). 

3. D. A. Dawson, K. Fleischmann, and L. G. Gorostiza, Stable hydrodynamic limit fluctua- 
tions of a critical branching particle system in a random medium, Ann. Prob. 17:1083-1117 
(1989). 

4. J.-B. Baillon, Ph. Cl6ment, A. Greven, and F. den Hollander. A variational approach to 
branching random walk in random environment, Ann. Prob., to appear. 

5. J. G/irtner and S. A. Molchanov, Parabolic problems for the Anderson model. I. Intermit- 
tency and related topics, Commun. Math. Phys. 132:613-655 (1990). 


